	Academy Park Chemistry		
Unit 1	The Importance of Matter		
Unit 2	The Composition of Matter		
Unit 3	Electrons		
Unit 4	The Periodic Table		
Unit 5	Bonding		
Unit 6	Chemical Reactions		
Unit 7	The Mole and Stoichiometry		

Keystone Assessment Anchors and NGSS

CHEM.A.1.1.1: Classify physical or chemical changes within a system in terms of matter and/or energy.

CHEM.A.1.1.2: Classify observations as qualitative and/or quantitative.

CHEM.A.1.1.3: Utilize significant figures to communicate the uncertainty in a quantitative observation.

CHEM.A.1.2.2: Differentiate between homogeneous and heterogeneous mixtures (e.g., how such mixtures can be separated).

CHEM.B.1.1.1: Apply the mole concept to representative particles (e.g., counting, determining mass of atoms, ions, molecules, and/or formula units).

CHEM.B.1.2.2: Apply the law of definite proportions to the classification of elements and compounds as pure substances.

HS-PS1-4. Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.

HS-PS1-7. Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.

HS-PS2-6. Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.*

HS-PS3-2. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects).

Unwrapping the Standards		
Big Ideas	Essential Questions	
Definition of Chemistry	Why is Chemistry considered 'The Central Science'	
Branches of Chemistry	What defines the various branches of chemistry?	
Matter, Mass, and Volume	What can and cannot be considered Matter?	
Mass versus Weight	How do mass and weight compare and contrast?	
Chemical versus Physical Change	How are chemical and physical changes different on the microscopic level?	
Indicators of a Chemical Reaction	How can you tell that a chemical change has taken place? How does the law of conservation of mass apply to chemical reactions?	
Interactions between any two objects can	How can one explain and predict interactions	
cause changes in one or both of them	between objects within systems?	
The Scientific Method	Are the steps in the Scientific Method interchangeable?	
Scientific Hypothesis, Theory, and Law	What is the difference between a theory and a scientific law?	
Quantitative versus Qualitative Observations	What are the similarities and differences between qualitative data and quantitative data?	
Observations versus Inferences	Why is it important for scientists to focus on recording observations and not inferences when gathering data?	
Homogeneous versus Heterogenous Mixtures	How does a mixture differ from a compound?	
Significant Figures	"When error is unavoidable in measurement, what margins of error are tolerable?" - UBD 2nd edition	
Accuracy versus Precision	How can the accuracy of experimental data be described using error and percent error?	

Unit 2: The Composition of Matter Topic: Atoms, Nuclear Change	Subject/Course: C.P. Chemistry Grade: 10 – 12 K. Greto	
Keystone Assessmer	nt Anchors and NGSS	
CHEM.A.1.1.4: Relate the physical properties of	matter to its atomic or molecular structure.	
CHEM.A.1.2.2: Differentiate between homogeneous and heterogeneous mixtures (e.g., how such mixtures can be separated).		
CHEM.A.1.2.4: Describe various ways that conce molarity, percent by mass, percent by volume).	entration can be expressed and calculated (e.g.,	
CHEM.A.2.1.1: Describe the evolution of atomi atom based on the works of Dalton, Thomson,		
CHEM.A.2.1.2: Differentiate between the mass mass of an element.	number of an isotope and the average atomic	
CHEM.B.1.1.1: Apply the mole concept to repres mass of atoms, ions, molecules, and/or formula		
CHEM.B.1.2.2: Apply the law of definite proport compounds as pure substances.	ions to the classification of elements and	
CHEM.B.1.4.1: Recognize and describe different types of models that can be used to illustrate the bonds that hold atoms together in a compound (e.g., computer models, ball-and-stick models, graphical models, solid-sphere models, structural formulas, skeletal formulas, Lewis dot structures).		
HS-PS1-7. Use mathematical representations to mass, are conserved during a chemical reaction		
HS-PS1-8. Develop models to illustrate the char atom and the energy released during the proce		
HS-PS2-6. Communicate scientific and technical structure is important in the functioning of desig	-	
	hat energy at the macroscopic scale can be	

Unwrapping	the Standards
Big Ideas	Essential Questions
States of Matter	How do the properties of the physical states
	of matter differ? (Including plasma)
Elements versus Compounds	What distinguishes elements from
	compounds?
Molecular Compounds can combine in more	How can there be a law of definite proportions
than one way	and a law of multiple proportions?
Atomic Number	How is the periodic table organized?
Early ideas about Atoms	What are the similarities and differences of
	the atomic models of Democritus, Aristotle,
	and Dalton?
Law of Conservation of Mass	How does Dalton's atomic theory explain the
	conservation of mass?
Cathode Ray Tube and Gold Foil Experiment	Why was Dalton and Thompson's model
	inadequate? What evidence led to the newer
	models of the atom?
The Parts of an Atom	What are the differences between the
	subatomic particles when it comes to charge
	and mass?
	What are the locations of the subatomic
	particles within the structure of an atom?
	Why is the location of the subatomic particles
	important to their function in creating a
	stable atom with set chemical and physical
	properties?
Isotopes	Do isotopes of the same element have
	different chemical properties?
Average Atomic Mass	Why are atomic masses not whole numbers?
How the subatomic particles are dependent	Given the mass number and atomic number,
on one another	how are the number of electrons, protons,
Padiantina Dagu	and neutrons in an atom calculated?
Radioactive Decay	What is the relationship between unstable
Tupos of Nuclear Badiation	nuclei and radioactive decay?
Types of Nuclear Radiation	How are alpha, beta, and gamma radiation
	characterized in terms of mass and charge?

Unit 3: Electrons Topic: Electron Configuration	Subject/Course: C.P. Chemistry Grade: 10 – 12
	K. Greto nt Anchors and NGSS
CHEM.A.1.1.4: Relate the physical properties of	
CHEM.A.2.1.1: Describe the evolution of atomic atom based on the works of Dalton, Thomson,	, .
CHEM.A.2.2.1: Predict the ground state electro given atom or ion.	nic configuration and/or orbital diagram for a
CHEM.A.2.2.2: Predict characteristics of an ator table (e.g., number of valence electrons, poten	m or an ion based on its location on the periodic tial types of bonds, reactivity).
CHEM.A.2.2.3: Explain the relationship between structure of a given atom or ion (e.g., energy le of electrons in orbitals, shapes of orbitals).	
CHEM.A.2.2.4: Relate the existence of quantize	d energy levels to atomic emission spectra.
CHEM.B.1.4.1: Recognize and describe different the bonds that hold atoms together in a compo- models, graphical models, solid-sphere models, dot structures).	ound (e.g., computer models, ball-and-stick
HS-PS1-1. Use the periodic table as a model to based on the patterns of electrons in the outer	
HS-PS2-6. Communicate scientific and technica structure is important in the functioning of de	
HS-PS3-5. Develop and use a model of two obj fields to illustrate the forces between objects the interaction.	ects interacting through electric or magnetic and the changes in energy of the objects due to
HS-PS4-1. Use mathematical representations to the frequency, wavelength, and speed of waves	o support a claim regarding relationships among s traveling in various media.
HS-PS4-3. Evaluate the claims, evidence, and r radiation can be described either by a wave m situations one model is more useful than the c	•
HS-PS4-4. Evaluate the validity and reliability of different frequencies of electromagnetic radiat	claims in published materials of the effects that ion have when absorbed by matter.
HS-PS4-5. Communicate technical information	about how some technological devices use the
principles of wave behavior and wave interaction	ons with matter to transmit and canture

principles of wave behavior and wave interactions with matter to transmit and capture information and energy.*

Unwrapping	the Standards
Big Ideas	Essential Questions
Electrons and Light as Waves versus Particles	How do the wave and particle natures of light compare?
Atomic Emission Spectra	How do continuous electromagnetic spectra and atomic emission spectra compare and contrast?
Bohr and Quantum Mechanical Models of the atom	How do the Bohr and quantum mechanical model of the atom compare?
Dual-Wave and Particle Behavior of Electrons	What is the impact of de Broglie's wave- particle duality and the Heisenberg uncertainty principle on the current view of electrons in atoms?
Electron Configuration	How are the Pauli exclusion principle, the
Orbital Filling Diagrams	aufbau principle, and Hund's rule used to write electron configurations with orbital diagrams and electron configuration notation? How can you use electron configuration to build a model of an atom?
Valence Electrons	What are valence electrons, and how do
Electron-Dot Structures	electron-dot structures represent an atom's valence electrons? Why do elements with similar valence electrons have similar chemical properties?
Purpose of Electrons	How does the electrons location affect its function in an atom?

Unit 4: The Periodic Table Topic: Development and Uses	Subject/Course: C.P. Chemistry Grade: 10 – 12 K. Greto
	K. Greto

Keystone Assessment Anchors and NGSS

CHEM.A.1.1.4: Relate the physical properties of matter to its atomic or molecular structure.

CHEM.A.1.2.3: Describe how factors (e.g., temperature, concentration, surface area) can affect solubility.

CHEM.A.2.2.2: Predict characteristics of an atom or an ion based on its location on the periodic table (e.g., number of valence electrons, potential types of bonds, reactivity).

CHEM.A.2.3.1: Explain how the periodicity of chemical properties led to the arrangement of elements on the periodic table.

CHEM.A.2.3.2: Compare and/or predict the properties (e.g., electron affinity, ionization energy, chemical reactivity, electronegativity, atomic radius) of selected elements by using their locations on the periodic table and known trends.

CHEM.B.1.1.1: Apply the mole concept to representative particles (e.g., counting, determining mass of atoms, ions, molecules, and/or formula units).

HS-PS1-1. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.

HS-PS2-6. Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.*

Linuranning	the Standards	
Unwrapping the Standards		
Big Ideas	Essential Questions	
Metals, Nonmetals, Metalloids	How do metals, nonmetals, and metalloids	
	differ?	
Lavoisier to Democritus	How was the periodic table developed?	
Structure of the Periodic Table	What are the key features of the periodic	
	table?	
Valence Electrons	Why do elements in the same group have	
	similar properties?	
Groups of Atoms	Based on their electron configurations, what	
	are the four blocks of the periodic table?	
	What are the key features of the various	
	groups/families in the periodic table?	
The Noble Gases	What can we learn from the electron	
	configurations of the Noble Gases?	
Trends in the Periodic Table	What are the period and group trends of	
	different properties?	
Atomic Radius as a Starting Point	How are the period and group trends in	
	atomic radii related to electron configuration?	

Unit 5: Bonding	Subject/Course: C.P. Chemistry	
Topic: Ionic, Covalent, Metallic	Grade: 10 – 12	
Topic: Ionic, Covalent, Metallic	K. Greto	
Keystone Assess	ment Anchors and NGSS	
CHEM.A.1.1.4: Relate the physical propert	ies of matter to its atomic or molecular structure.	
CHEM.A.1.1.5: Apply a systematic set of ru	Iles (IUPAC) for naming compounds and writing	
chemical formulas (e.g., binary covalent, b	inary ionic, ionic compounds containing polyatomic	
ions).		
	ions containing ionic or molecular solutes (e.g.,	
dissolving, dissociating).		
	atom or an ion based on its location on the periodic	
table (e.g., number of valence electrons, po		
• • •	properties (e.g., electron affinity, ionization energy,	
	ic radius) of selected elements by using their	
locations on the periodic table and known t		
	epresentative particles (e.g., counting, determining	
mass of atoms, ions, molecules, and/or forr		
CHEM.B.1.2.1: Determine the empirical and		
	e to form compounds through ionic and covalent	
bonding.		
CHEM.B.1.3.2: Classify a bond as being pold		
	rent types of models that can be used to illustrate	
	mpound (e.g., computer models, ball-and-stick	
	dels, structural formulas, skeletal formulas, Lewis dot	
structures).		
	o predict the structure and bonding in simple	
compounds.		
	I to predict the relative properties of elements based	
on the patterns of electrons in the outermo.		
	nical information about why the molecular-level	
structure is important in the functioning o	-	
·	objects interacting through electric or magnetic	
fields to illustrate the forces between objects and the changes in energy of the objects due to		
the interaction.		

Unwrapping the Standards		
Big Ideas	Essential Questions	
The Different Types of Bonds	What holds atoms together in a chemical bond?	
Ion Formation	How do positive and negative ions form? How does ion formation relate to electron configuration?	
Ionic Bonds and their properties	How do ionic bonds form and how are ions	

	arranged in an ionic compound?
	What can you conclude about the strength of ionic
	compounds based on the physical properties of
	ionic compounds?
	Is ioninc bond formation exothermic or
Converting both son former la unite and	endothermic?
Converting between formula units and IUPAC names	What is a formula unit and how does it relate to an ionic compound's composition?
	How do you write the formula for compounds
	formed from different ions and oxyanions
	(polyatomic ions)?
	What are the naming conventions for ionic
	compounds and oxyanions (polyatomic ions)?
Metallic Bonds	What are the characteristics of a metallic bond?
	How are they similar and different from Ionic
	compounds?
	How does the electron sea model account for the
	physical properties of metals?
Alloys	What are alloys, and how can they be categorized?
Covalent Bonds and Molecular	How does the octet rule apply to atoms to form
Compounds Properties	covalent bonds? Why do atoms form single, double,
	and triple covalent bonds.
	How are the strength of a covalent bond, its bond
	length, and its bond dissociation energy related,
	including how they relate to endothermic and
	exothermic reactions?
	Are electrons really shared in covalent compounds
	or is there more of a level of competition? Do the
	electrons stay in the middle fo the two atoms?
Converting between names and formulas	What rules do you follow to name a binary
for Covalent compounds	molecular compound from its molecular formula?
	How are the naming rules similar and different from
	naming ionic compounds?
	How are acidic solutions named?
Lewis Dot Structures for Compounds	What are the basic steps to draw Lewis Structures?
	How is electronegativity used to determine bond
	type?
Electronegativity and Polarity	How do polar and nonpolar covalent bonds and
	polar and nonpolar molecules compare and
	contrast? How does polarity play a key role in the
	blood-brain barrier?

Unit 6: Chemical Reactions Topic: Chemical Reactions	Subject/Course: C.P. Chemistry
	Grade: 10 – 12
	K. Greto
Keystone Asse	ssment Anchors and NGSS
CHEM.A.1.1.1: Classify physical or chemic	al changes within a system in terms of matter and/or
energy.	
CHEM.A.1.1.5: Apply a systematic set of r	ules (IUPAC) for naming compounds and writing
chemical formulas (e.g., binary covalent,	binary ionic, ionic compounds containing polyatomic
ions).	
CHEM.A.1.2.3: Describe how factors (e.g.,	temperature, concentration, surface area) can affect
solubility.	
CHEM.A.1.2.5: Describe how chemical bo	nding can affect whether a substance dissolves in a
given liquid.	
CHEM.B.1.1.1: Apply the mole concept to	representative particles (e.g., counting, determining
mass of atoms, ions, molecules, and/or fo	ormula units).
CHEM.B.1.4.1: Recognize and describe dif	ferent types of models that can be used to illustrate
the bonds that hold atoms together in a c	compound (e.g., computer models, ball-and-stick
models, graphical models, solid-sphere m	odels, structural formulas, skeletal formulas, Lewis dot
structures).	
CHEM.B.2.1.1: Describe the roles of limiting	ng and excess reactants in chemical reactions.
CHEM.B.2.1.3: Classify reactions as synth	nesis, decomposition, single replacement, double
replacement, or combustion.	
CHEM.B.2.1.4: Predict products of simple	chemical reactions (e.g., synthesis, decomposition,
single replacement, double replacement,	combustion).
CHEM.B.2.1.5: Balance chemical equatio	ns by applying the Law of Conservation of Matter.
HS-PS1-2. Construct and revise an explana	ation for the outcome of a simple chemical reaction
based on the outermost electron states of	f atoms, trends in the periodic table, and knowledge of
the patterns of chemical properties.	
HS-PS1-4. Develop a model to illustrate th	nat the release or absorption of energy from a chemical
reaction system depends upon the change	es in total bond energy.
HS-PS1-5. Apply scientific principles and e	evidence to provide an explanation about the effects of
changing the temperature or concentration	on of the reacting particles on the rate at which a
reaction occurs.	
HS-PS1-7. Use mathematical representati	ons to support the claim that atoms, and therefore
mass, are conserved during a chemical re	

Unwrapping the Standards		
Big Ideas	Essential Questions	
Indicators of a Reaction	What is evidence of chemical change?	
Word and Skeleton Equations	What are some of the different ways that a chemical reaction can be represented?	
Balancing Equations	What does it mean for a chemical equation to be balanced? How is this accomplished?	
Classifying Reactions	How are chemical reactions classified? What is the benefit of classifying reactions?	
Predicting Products	What are the characteristics of different classes of chemical reactions? Do reactions always occur? What are some	
Parts of a Reaction	limiting factors? What is a catalyst? What are aqueous solutions? How do you represent the need for light in photosynthesis when it is technically not a reactant or product?	

Unit 7: The Mole and Stoichiometry	Subject/Course: C.P. Chemistry
Topic: Stoichiometry, the Mole, Molar Mass,	Grade: 10 – 12
and Molar Volume	K. Greto

Keystone Assessment Anchors and NGSS

CHEM.A.1.1.3: Utilize significant figures to communicate the uncertainty in a quantitative observation.

CHEM.A.1.1.5: Apply a systematic set of rules (IUPAC) for naming compounds and writing chemical formulas (e.g., binary covalent, binary ionic, ionic compounds containing polyatomic ions).

CHEM.B.1.1.1: Apply the mole concept to representative particles (e.g., counting, determining mass of atoms, ions, molecules, and/or formula units).

CHEM.B.2.1.1: Describe the roles of limiting and excess reactants in chemical reactions.

CHEM.B.2.1.2: Use stoichiometric relationships to calculate the amounts of reactants and products involved in a chemical reaction.

CHEM.B.2.1.5: Balance chemical equations by applying the Law of Conservation of Matter.

CHEM.B.2.2.2: Predict the amounts of reactants and products involved in a chemical reaction using molar volume of a gas at STP.

HS-PS1-4. Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.

HS-PS1-7. Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.

Unwrapping the Standards		
Big Ideas	Essential Questions	
Moles to Particles	How can moles be converted to number of	
	representative particles and vice versa?	
Molar Mass versus Atomic Mass	Why can the mass of an atom be related to	
	the mass of a mole of atoms?	
Moles to Mass	How can the number of moles be converted to	
	the mass of a substance and vice versa?	
Percent Composition	What is meant by percent composition of a	
	compound?	
Empirical and Molecular Formula	How can the empirical and molecular formulas	
	for a compound be determined from mass	
	percent and actual mass data?	
Mole to Mole Conversions	What relationships can be derived from a	
	balanced chemical equation?	
Stoichiometry Process	What is the sequence of steps used in solving	
	stoichiometric problems?	
Limiting and Excess Reactants	In a chemical reaction, how can you determine	
	which reactant is the limiting one? The excess	
	one?	

Theoretical and Percent Yield	What is the theoretical yield of a chemical reaction? How do you calculate the percent
	yield for a chemical reactions?

